Church integer - ορισμός. Τι είναι το Church integer
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Church integer - ορισμός

REPRESENTATION OF THE NATURAL NUMBERS AS HIGHER-ORDER FUNCTIONS
Church numeral; Church number; Church boolean; Church booleans; Church numerals; Church integer; Church numbers

Church integer         
<theory> A representation of integers as functions invented by Alonzo Church, inventor of lambda-calculus. The integer N is represented as a higher-order function which applies a given function N times to a given expression. In the {pure lambda-calculus} there are no constants but numbers can be represented by Church integers. A Haskell function to return a given Church integer could be written: church n = c where c f x = if n == 0 then x else c' f (f x) where c' = church (n-1) A function to turn a Church integer into an ordinary integer: unchurch c = c (+1) 0 See also von Neumann integer. (1994-11-29)
Church encoding         
In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation.
Almost integer         
  • [[Ed Pegg Jr.]] noted that the length ''d'' equals <math>\frac{1}{2}\sqrt{\frac{1}{30}(61421-23\sqrt{5831385})} </math> that is very close to 7 (7.0000000857 ca.)<ref name="MathWorld"/>
ANY NUMBER THAT IS NOT AN INTEGER BUT IS VERY CLOSE TO ONE
Near integer; Near-integer
In recreational mathematics, an almost integer (or near-integer) is any number that is not an integer but is very close to one. Almost integers are considered interesting when they arise in some context in which they are unexpected.

Βικιπαίδεια

Church encoding

In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.

Terms that are usually considered primitive in other notations (such as integers, booleans, pairs, lists, and tagged unions) are mapped to higher-order functions under Church encoding. The Church-Turing thesis asserts that any computable operator (and its operands) can be represented under Church encoding. In the untyped lambda calculus the only primitive data type is the function.